JFE论文速递:Fama-French五因素模型
由Eugene F. Fama和Kenneth R. French撰写Journal of Financial Economics2015年第4期论文“A five-factor asset pricing model”对原有的Fama-French(1993)三因素模型进行了改进,在原有的市场、公司市值(即SML,small minus large)以及账面市值比(即HML,high minus low)三因子的基础上,加入了盈利能力(profitability)因子(即RMW,robust minus weak)和投资模式(investment patterns)因子(即CMA,conservative minus aggressive),从而能够更好地解释股票横截面收益率的差异。然而,有些小企业的股票收益率,和投资水平高、盈利能力低的公司相似。作者指出,五因素模型的主要不足就在于无法解释这类小企业的股票平均收益率为何如此之低。此外,引入RMW和CMA因子后,1963至2013年的美国股市数据表明,HML因子是“多余”的。
Fama和French于1993年提出的三因素模型在金融圈几乎无人不知,该模型很好地捕捉到了股票收益率与其市值和账面市值比之间的关系。三因素模型也一直是众多学者检验和挑战的对象。Novy-Marx (2013)发现,总盈利-资产比率(gross profits-to-assets)对股票横截面平均收益率,具有接近于HML因子的解释能力。Aharoni, Grundy和Zeng (2013)指出,公司投资水平和股票平均收益率显著相关(亦可参见Haugen和Baker,1996、Titman, Wei和Xie, 2004、Fama和French,2006、2008等)。由此可见,三因素模型对预期收益率的描述并不全面,因为三个因子并不能解释由公司盈利能力与投资模式所造成的股票收益率差异。
基于上述理论及实证研究,Fama和French在原有的三因素模型中,加入了代表盈利能力的RMW因子和代表投资模式的CMA因子。与之前因子的构建方式类似,RMW是营业利润率(operating profitability)高的多元化投资组合的收益率,减去营业利润率低的多元化组合的收益率。CMA则是投资水平低(“保守”)的多元化投资组合的收益率,减去投资水平高(“积极”)的多元化组合的收益率。其中,营业利润率的衡量标准,是上一财年的总收入,扣除主营业务成本、利息支出和销售、一般及行政费用,再除以上一财年末账面权益总额。而对投资的衡量,则是用上一财年相对于之前财年的总资产增加额,除以之前财年末的总资产金额。
为了清楚地观察各个因子与收益率的关系,本文使用1963年7月至2013年12月的美国股市数据,采用类似Fama和French (1993)的方法对样本数据进行分析。作者分别根据市值-账面市值比、市值-营业利润率和市值-投资水平,对股票进行了3次5×5均分,每次得到25个投资组合。作者发现,总体而言,存在价值、盈利能力以及投资效应:即在控制其他变量的情况下,股票的账面市值比越高,营业利润率越高,投资水平越低,其平均回报率越高,这些现象在市值较小的股票中尤为明显。
在构造SML、HML、RMW和CMA这4个因子时,作者提出了三种投资组合划分的方法。第一种:分别根据市值-账面市值比、市值-营业利润率和市值-投资水平,对股票进行3次2×3划分,每次得到6个投资组合。以市值-账面市值比划分为例,作者将市值以纽交所均值为分水岭,划分为大、小2类;对账面市值比,则以纽交所的第30和第70百分位数为分水岭,划分为高、中、低3类。第二种:分别根据市值-账面市值比、市值-营业利润率和市值-投资水平,以纽交所均值为分水岭,对股票进行3次2×2划分,每次得到4个投资组合。第三种:根据市值-账面市值比-盈营业利润率-投资水平,对股票进行1次2×2×2×2的划分,得到16个投资组合。作者认为,第二种方法在构建因子时,使用了全部股票,而第一种方法却没有使用第30至第70百分位数的股票,因此第二种方法构建的因子更为多元化;而第三种方法,则能更有效地从平均收益率中,分离出市值、账面市值比、营业利润率和投资水平的风险溢价。
作者进行回归分析,并按照Gibbons, Ross和Shanken (1989)的方法进行检验。GRS统计量表明,五因素模型并不能完全描述股票的期望收益率,但是五因素模型依然可以解释71%至94%的不同组合收益率在横截面水平上的差异。五因素模型的GRS统计量值小于三因素模型,回归的截距项(代表异常收益)的绝对值也小于三因素模型,说明五因素模型的解释能力要优于三因素模型。作者还发现,三种划分投资组合、构建因子的方式并不影响回归的截距项。
此外,作者认为,HML似乎是一个“多余”的因子:HML的风险溢价基本上能被其他因子所解释,尤其是能被RMW和CMA因子解释,所以剔除HML,不会对回归的截距项有影响。若想更好地估计每个因子的风险溢价,则可以用HML因子对市场、SMB、RMW和CMA因子回归,将所得截距与误差相加,构建正交HML因子(HMLO),用HMLO来代替HML,加入五因素模型。
作者还指出,五因素模型存在的问题在于不能很好地解释,为什么盈利能力不强、投资较多的小市值股票,会有低于平均水平的收益率,而同样是盈利能力不高、投资较多的大市值股票却有很高的收益率。
(选文:张凡审稿:戴萦袅编辑:李金龙 来源:金融学前沿论文速递)
交易技术, 交易策略
风险提示及免责条款
市场有风险,投资需谨慎。本文不构成个人投资建议,也未考虑到个别用户特殊的投资目标、财务状况或需要。用户应考虑本文中的任何意见、观点或结论是否符合其特定状况。据此投资,责任自负。本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处。如若内容有涉嫌抄袭侵权/违法违规/事实不符,请点击 举报 进行投诉反馈!