如何成为一个量化交易者
许多学数学和统计学的高材生都有志成为量化交易者,但现今由于高频交易、算法交易和程序化交易的出现,使得量化交易的工作职位描述变得很宽泛。量化交易领域的工作需求很大,而且他们不仅仅需要在数据分析上有突出技能的人,也需要对自动交易系统更了解,可以构建和执行自动交易系统的人。
本文将介绍数学和统计背景的人如何成为量化交易者,哪些专业技能和培训可以帮助你成为一个宽客,哪些工作经验可以胜任量化交易工作和相关工作。
量化交易者需要具备数据分析、数据挖掘和数据研究的能力,这些能力只是很小的一部分,也必须在其它领域精通:
- 针对交易的特定计算机技能
数学和统计在数据分析软件和平台应用很广泛。然而,它们在量化交易的应用却受限。例如:试算表在数据分析中运用很广泛,但是在专业量化平台,如MATLAB,进行交易和研究的特定分析可能需要更多培训和亲身经验。
使用一些交易软件,无论是免费试用版还是完全版,都会给你实践经验。大学通常会对这些专业应用提供资源。编程语言相似性:高级即插即用交易软件市面上有很多,他们声称可以满足量化交易很多方面的要求。但是真正很好的却很少,大多数不能符合当前量化交易的动态实际需求。成功的量化交易者需要具备独立构想并建立交易系统的能力,这个只能够通过计算机编程实现。建立这些交易系统的常用编程语言是Perl、Python、Java和C++,交易者至少要熟悉其中一种。
数学和统计课程里可能不提供编程课程,但是那些编程课程都可以在网上的交互式课程中找到。短期专业培训课程在网上都是可以找到的。
- 熟悉市场数据
量化交易需要都市场数据很熟悉,这个要求高于数据和统计的范畴,而且不仅仅停留在常见的开盘价、最高价、最低价和收盘价。宽客也需要对相关公司行为的市场数据和特定产品有一个全面的了解,需要了解这些行为对交易有什么影响,这些产品不仅仅局限在股票和债券,像认股权证、衍生品、柜台交易产品等等。
市场数据只是很容易在网上可以获得。不同公司行为和关联话题的影响案例学习很容易获得,这些对数学和统计背景有志于学习量化交易的人来说是很容易的一件事。包括股票交易所在内的不同权威机构都有一些专业付费课程和证书提供,这些经历在简历上都是加分项,让你成为种子选手。
对常见交易策略的理解:虽然宽客需要发掘和设计自己的交易策略,但是对常用的交易策略的理解也是必须的。它提供了量化交易的基础知识,这对有资质的人来说是一个很好的开始。
- 熟悉风险管理概念
特定标准,如场景分析、止损机制、交易资金限制等在交易系统中用来管理风险。因为这是量化交易的一个重要部分,所以你必须熟悉这些概念。
风险管理本身就是一个很大的话题,所以你可以找到很多专业课程和模型来学习。熟悉这些基本概念和这些概念如何影响他们的系统可以满足量化交易者的需求。
- 选择交易特定选修课程
大多数数学和统计课程提供选修。有志成为宽客的需要通过选择交易/市场特定模型来获利。
- 量化交易者的心态
许多人立志成为量化交易者,但并不是每一个都符合量化交易者的要求。在大型交易公司的面试中,候选者需要被认定有交易者的性情。冒险精神、接受失败的能力、抗压能力、长时间工作在面试的时候都是一些考核指标。
最好做一个自我评价,事先问一下自己是否适合这个高风险高回报的工作。只有你自己才能真实的评价你是否符合这个赚钱的工作。自己做生意也是另一个选择,但是成功失败都由你自己承担。
- 建立一个标准/明确的交易规划
上述欠缺补上以后,试着根据你自己的观念建立一个标准,将其作为明确的量化交易规划。这可以给你很好的有数学或统计支撑的讨论点,是你在量化交易工作中更胜一筹。
总结
有计算机自动化的帮助,交易领域有无限机遇。一方面,它让更多的观念和思想进入这个领域;另一方面,它形成了独特的计算机见交易,也就是说量化交易者的角色仅限于建立高风险的智能交易平台。根据以上所述,你自行做一个全面的自我评价可以帮助你决定你如何从一个数学/统计的高材生进入量化交易世界。
交易技术, 交易策略
风险提示及免责条款
市场有风险,投资需谨慎。本文不构成个人投资建议,也未考虑到个别用户特殊的投资目标、财务状况或需要。用户应考虑本文中的任何意见、观点或结论是否符合其特定状况。据此投资,责任自负。本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处。如若内容有涉嫌抄袭侵权/违法违规/事实不符,请点击 举报 进行投诉反馈!